J-MAPS Technical Memorandum 08-12

Star Counts and Photometric Parallaxes as a Function of

Spectral Type and V-band Magnitude

Zack Dugan

31 July 2008

ABSTRACT

Using B and V-band photometry from NOMAD, both raw counts and relative percentages of each spectral type per magnitude are calculated, as well as the average distance and parallax of each spectral type per magnitude to provide the Joint Milli Arcsecond Pathfinder Survey (J-MAPS) with an enhanced understanding of potential stars to observe.

1. Introduction

The goal of this study is to find the general distribution of stellar spectral types at each Johnson V-band apparent magnitude between -3 and 14, using the Naval Observatory Merged Astrometric Dataset (Zacharias et al. 2004; NOMAD) as the main database to realize expectations of target stars for the Joint Milli-Arcsecond Pathfinder Survey (J-MAPS). The B and V-band magnitudes of each star are used to calculate the spectral type, and thus, only stars with both B and V-band data were included in the results. Then, assuming all stars to be Zero Age Main Sequence Stars (ZAMS), each star's absolute V-band magnitude is calculated based on either 6^{th} order polynomial interpolations or spectral type averages, depending on the spectral type. With each star's absolute and apparent V-band magnitude, each star's photometric distance and parallax are calculated. The results include the percentage of stars with spectral data at each magnitude, the tally and percentage of stars of each spectral type at each magnitude, the average distance to stars of a spectral type at a certain magnitude, and the average photometric parallax of stars of a spectral type at a certain magnitude.

2. Methodology

While NOMAD can provide up to 22 separate pieces of information about each star in the catalog, we are only interested in spectral distribution at a relatively coarse level of accuracy. Only the B-band and the V-band photometric data are neccessary to calculate the spectral types for this level of accuracy. First, all stars with a V-band magnitude brighter than 17 are extracted from NOMAD into a separate file. While J-MAPS is only required to observe 90% of stars at the 14^{th} magnitude, it will observe stars at fainter magnitudes without specifically allocating resources to do so. Stars with magnitudes as faint as 17 are extracted to ensure the validity of observed trends.

The B and V magnitudes of each star in the extraction file are then scanned and used to calculate a B-V color. The star's spectral type is determined using limitations on the B-V color established in Chapter 15 of Cox (2000) and listed in Table 1. The counts of the spectral types at magnitudes -3 through 16 were recorded in Table 2, while Table 3 shows the percentage of stars of a spectral type per magnitude. Table 4 shows the percentage of stars at each magnitude with sufficient photometric data for classification. All magnitudes are binned rounding to the nearest whole magnitude.

For spectral types B, A, F, G, and K, the same B-V data is used in three separate 6^{th} order polynomial interpolations from Mermilliod (1981), Schmidt-Kaler et al. (1982), and Turner (1981). Each scheme calculated the absolute magnitude with the same general equation, Equation 1, but different sets of coefficients, listed in Table 5.

$$M_v = a(B-V)^6 + b(B-V)^5 + c(B-V)^4 + d(B-V)^3 + e(B-V)^2 + f(B-V) + g \quad (1)$$

The resulting estimates of the absolute magnitudes of the three schemes are then averaged to increase accuracy, and the mean of the three approximations is used as the star's absolute magnitude for types B through G.

However, while this study excluded data from NOMAD that had been flagged as insufficient or inaccurate, the photometric data available for O stars is not always sufficient to use the interpolations, a method that resulted in frequent disagreement with empirical data from Cox (2000) on real O stars. Thus, a spectral class of O9 is assigned because it is the most common among O stars. The corresponding ZAMS absolute V-band magnitude of -4.5, according to chapter 15 of Cox (2000), was then applied to each O star. This method is applied to the K and M stars for the same reason, using the common spectral types of K4 and M0 and the respective magnitudes of 7.0 and 8.8, according to Appendix E of Carroll (1996). With values for both the absolute (M_v) and the apparent (m_v) V-band magnitudes, the photometric distance (d) in parsecs is found using the distance modulus relation:

$$d = 10^{\frac{(m_v - M_v + 5)}{5}} \tag{2}$$

This approach can be problematic when the star in question is not on the main sequence, causing the star's actual absolute magnitude to vary significantly from the prediction. This issue affects K and M stars the most because giants of the same spectral types have much brighter absolute magnitudes than the corresponding dwarves. Because the distance modulus is only accurate when the estimate of the absolute magnitude is accurate, additional strict infrared photometric constraints from Chapter 7 of Cox (2000), listed in Table 6, were used in an attempt to include in the distance calculations only K and M stars definitely on the main sequence. However, even with the additional constraints, some giants' photometric values could still fall within the boundaries of main sequence stars, introducing error to some distances. The counts of the K and M stars at each magnitude that are used in the distance calculations are recorded in Table 7. From the distance, the photometric parallax (π , seconds of arc) is calculated using the relation:

$$\pi'' = \frac{1}{d} \tag{3}$$

The distance and parallax of all stars of a given spectral type at a given magnitude are averaged and recorded in Tables 8 and 9, respectively.

3. Results

Information for over 113 million stars is evaluated. NOMAD provides sufficient information on more than 97% of those stars to allow classification.

Of particular importance are four different V-band magnitudes: V=5, 10, 12, and 14. The normal saturation level of the detector occurs at V=5 magnitude. The J-MAPS guide stars are 10^{th} magnitude stars. The acceptable and normal limits of accuracy occur at the 12^{th} and 14^{th} magnitudes, respectively. Figures 1-4 show the spectral composition of these four magnitudes. The spectral distribution at the 5^{th} magnitude is roughly evenly spread between the spectral types, except for the small contribution from the O and G stars. At the 10^{th} , 12^{th} , and 14^{th} magnitudes, the F, G, and K stars comprise the vast majority. The percentage of M stars drops after the 11^{th} magnitude.

Table 1: Spectral Type B-V Constraints

			J I -				
	Ο	В	А	F	G	Κ	М
Min. B-V	-10.1	-0.30	-0.02	0.30	0.58	0.81	1.40
Max. B-V	-0.30	-0.02	0.30	0.58	0.81	1.40	10.0

Reference: Table 1 values come from Cox (2000).

				Itaw Diena	a Counts				
Apparent Visual								Magnitude	Cumulative
Magnitude	0	В	А	\mathbf{F}	G	Κ	Μ	Total	Total
-3	0	0	0	0	0	0	0	0	0
-2	0	0	0	0	0	0	0	0	0
-1	0	0	0	1	0	0	0	1	1
0	0	0	0	0	0	0	0	0	1
1	0	3	2	0	0	2	3	10	11
2	1	24	16	4	2	8	12	67	78
3	0	58	38	13	7	45	31	192	270
4	3	147	126	68	13	183	65	605	875
5	2	410	426	198	58	503	292	1889	2764
6	3	850	1457	766	195	1778	879	5928	8692
7	2	1484	4372	2966	684	5440	2656	17604	26296
8	8	1946	11782	10638	2643	16399	7362	50778	77074
9	27	2258	27387	35241	9552	45827	19922	140214	217288
10	97	2610	54116	102329	40447	125387	50382	375368	592656
11	865	6100	105885	263555	159596	282126	143233	961360	1554016
12	19017	70867	307903	472741	404552	614303	151198	2040581	3594597
13	130454	237326	1017351	1848637	1422663	1506556	378569	6541556	10136153
14	396285	497027	2168410	3984197	3170289	4099727	1345018	15660953	25797106
15	1158190	1085527	3990546	6833319	5733768	7634168	2537313	28972831	54769937
16	2661315	2567142	7789796	12083110	10676571	14934463	4753449	55465846	110235783
Total	4366269	4473779	15479614	25637783	21621040	29266915	9390383	110235783	

Table 2: Spectral Distribution by MagnitudeRaw Stellar Counts

Note: Table 2 lists the number of stars of each spectral type at apparent visual magnitudes -3 through 16. The Magnitude Total column shows the total number of stars at every magnitude, while the Cumulative Total column lists the number of all stars at that magnitude and all brighter magnitudes. The row Total counts the total number of stars of each spectral type at every magnitude combined. The K star and M star columns include stars that were not used in the distance and parallax calculations because the stars could not be confirmed as main sequence.

	rereentage								
Apparent Visual									
Magnitude	Ο	В	А	\mathbf{F}	G	Κ	Μ		
-3									
-3									
-2									
-1	0.00	0.00	0.00	100.00	0.00	0.00	0.00		
0									
1	0.00	30.00	20.00	0.00	0.00	20.00	30.00		
2	1.49	35.82	23.88	5.97	2.99	11.94	17.91		
3	0.00	30.21	19.79	6.77	3.65	23.44	16.15		
4	0.50	24.30	20.83	11.24	2.15	30.25	10.74		
5	0.11	21.72	22.56	10.49	3.07	26.64	15.47		
6	0.05	14.32	24.54	12.90	3.28	29.95	14.81		
7	0.01	8.41	24.79	16.82	3.88	30.84	15.06		
8	0.02	3.83	23.17	20.92	5.20	32.24	14.48		
9	0.02	1.61	19.49	25.08	6.80	32.61	14.18		
10	0.03	0.69	14.37	27.18	10.74	33.30	13.38		
11	0.09	0.63	11.00	27.39	16.59	29.32	14.89		
12	0.93	3.47	15.07	23.14	19.80	30.07	7.40		
13	1.99	3.62	15.53	28.22	21.71	23.00	5.78		
14	2.52	3.17	13.82	25.39	20.20	26.12	8.57		
15	3.99	3.74	13.74	23.54	19.75	26.29	8.74		
16	4.79	4.62	14.02	21.74	19.21	26.87	8.55		

 Table 3: Spectral Distribution by Magnitude

 Percentage

Note: Table 3 presents the percentage of stars at a given magnitude of each spectral type.

Apparent	Number With	Number Without	Percentage With
Visual Magnitude	Spectral Data	Spectral Data	Spectral Data
-3	0	0	
-2	0	0	
-1	1	0	100.00
0	0	0	
1	10	0	100.00
2	71	0	100.00
3	191	0	100.00
4	601	0	100.00
5	1889	1	99.95
6	5937	66	98.90
7	17639	182	98.98
8	50857	332	99.35
9	140536	1397	99.02
10	376484	4508	98.82
11	962178	10596	98.91
12	2042902	38759	98.14
13	6551628	132212	98.02
14	15694871	356202	97.78
15	29033322	764913	97.43
16	55578537	1613989	97.18

Table 4: Percentage of Stars with B and V-band Spectral Data by Magnitude

Note: Table 4 records the percentages of stars for which NOMAD has B and V-band data because the B-V index was used initially to classify the stars' spectral type. Without B or V-band data, a star could not be classified.

Table 5: Interpolation Coefficients

Author	a	b	с	d	е	f	g
Mermilliod 1981	70.886	-108.12	14.865	41.256	-17.994	6.504	1.5854
Schmidt-Kaler et al.1982	-6.472	32.247	-56.115	41.648	-13.35	7.7839	0.8925
Turner 1981	-26.249	77.943	-90.138	48.264	-10.321	5.762	1.4555

Note: Interpolation method not used with spectral types O, K, or M because of the inaccuracy of O, K, and M star photometric data.

Sequence K and M Stars								
K (mag)	M (mag)							
0.64								
0.99	1.8							
1.96	3.65							
3.16	7.4							
0.45	0.62							
0.66	0.66							
	uence K and K (mag) 0.64 0.99 1.96 3.16 0.45 0.66							

 Table 6: Photometric Constraints for Main
 Sequence K and M Stars

Note: Table 6 lists the extra photometric constraints from Cox (2000) placed on K and M stars to include in the distance and parallax calculations only those that are definitely on the main sequence.

and Paranax Calculations								
Magnitude	Κ	М						
-3	0	0						
-2	0	0						
-1	0	0						
0	0	0						
1	0	0						
2	0	1						
3	1	0						
4	65	0						
5	177	0						
6	398	4						
7	1751	5						
8	8295	192						
9	24352	198						
10	59926	275						
11	91339	613						
12	82544	427						
13	48522	337						
14	67413	2050						
15	154377	7394						
16	383218	25282						

Table 7: Counts of Main Sequence K and M Stars used in Distance and Parallax Calculations

Note: Table 7 lists the counts of main sequence K and M stars used in distance and parallax calculations because only main sequence stars could be used in those calculations. Not all the K and M stars in NOMAD could be confirmed to be main sequence.

		(
Apparent Visual Magnitude	0	В	А	F	G	K	М
-3							
-2							
-1							
0							
1		17.63	7.23				
2	48.48	23.90	12.09	4.59	2.47		0.52
3		40.14	15.87	7.87	3.63	1.75	
4	119.93	62.78	27.94	13.05	5.83	2.69	
5	243.38	90.53	43.64	20.53	9.51	4.12	
6	309.69	130.92	69.43	32.37	15.93	6.53	2.89
7	503.77	189.74	106.75	51.13	25.05	10.94	4.74
8	823.64	279.38	164.34	79.35	40.17	16.65	7.59
9	1364.37	434.10	253.02	122.78	64.46	26.35	10.72
10	2138.13	725.60	381.53	188.33	101.76	41.36	18.25
11	3492.49	1511.97	583.43	296.21	154.52	64.64	28.53
12	5551.82	3371.07	984.01	476.47	243.80	99.32	41.19
13	8393.02	5481.83	1550.78	762.69	388.19	158.22	74.67
14	13237.90	8832.10	2389.87	1176.27	606.28	260.71	116.45
15	21060.86	14480.41	3898.07	1880.72	959.00	418.44	185.60
16	32776.65	23073.86	6195.73	2970.78	1517.80	654.04	291.30

Table 8: Average Distance by Magnitude (Parsecs)

Note: Table 8 presents the average distance in parsecs to different spectral types at different magnitudes.

()									
Apparent Visual Magnitude	0	В	А	F	G	Κ	М		
-3									
-2									
-1									
0									
1		56.72	138.31						
2	20.63	41.85	82.68	217.84	404.10		1936.42		
3		24.92	63.01	127.11	275.48	572.01			
4	8.34	15.93	35.79	76.62	171.57	371.44			
5	4.11	11.05	22.92	48.71	105.15	242.88			
6	3.23	7.64	14.40	30.90	62.78	153.05	345.98		
7	1.99	5.27	9.37	19.56	39.92	91.38	210.97		
8	1.21	3.58	6.09	12.60	24.89	60.05	131.81		
9	0.73	2.30	3.95	8.14	15.51	37.95	93.25		
10	0.47	1.38	2.62	5.31	9.83	24.18	54.80		
11	0.29	0.66	1.71	3.38	6.47	15.47	35.05		
12	0.18	0.30	1.02	2.10	4.10	10.07	24.28		
13	0.12	0.18	0.65	1.31	2.58	6.32	13.39		
14	0.08	0.11	0.42	0.85	1.65	3.84	8.59		
15	0.05	0.07	0.26	0.53	1.04	2.39	5.39		
16	0.03	0.04	0.16	0.34	0.66	1.53	3.43		

Table 9: Average Photometric Parallax by Magnitude (mas)

Note: Table 9 presents the average parallax in mili-arcseconds of different spectral types at different magnitudes.

Figure 1: Spectral Distribution for 5^{th} Magnitude Stars

Figure 2: Spectral Distribution for 10^{th} Magnitude Stars

Figure 3: Spectral Distribution for 12^{th} Magnitude Stars

Figure 4: Spectral Distribution for 14^{th} Magnitude Stars

4. Discussion

Because several smaller catalogs compose NOMAD, each having its own specific range in magnitude, the accuracy of the photometric data is not uniform. Most notably, the Tycho-2 Catalogue (Høg et. al. 2000) provides accurate photometric data through the 11^{th} magnitude, after which, the U.S. Naval Observatory CCD Astrograph Catalog (UCAC2) (Zacharias et. al. 2004) has no B or V-band photometric data, and the USNO-B (Monet et. al. 2002) catalogs have significantly less-precise photometric information. The drop in accuracy of the B and V-band data after 11^{th} magnitude may cause the drop in the number of M stars after the 11^{th} . M stars have the highest B-V value of the spectral types concerned, a bias toward a smaller B-V value could cause the number of M stars with magnitudes fainter than the 11^{th} to decrease. That same bias may also be responsible for the increase in O stars beginning at that same magnitude because O stars have the smallest B-V value of the spectral types concerned.

According to Table 4, however, the proportion of stars with photometric data does not drop significantly during the catalog transition. Thus, the spectral distributions, distances, and photometric parallaxes at magnitudes fainter than V=11.5 are not as accurate as those at brighter magnitudes, which poses a problem because the 12^{th} and 14^{th} magnitudes are important to the J-MAPS mission.

While the extra constraints placed on M and K stars excluded many giants and likely many main sequence stars as well, they could not exclude all giants because of the overlap in photometric value limits between main sequence K and M stars and the respective giants. As a result, many of the distances and parallaxes included in the averages listed in Table 8 and 9 are inaccurate. These inaccuracies are most visible at the brighter magnitudes, where some of the values conflict with empirical data from Cox (2000). Some of the distances and parallaxes for K and M stars are not included in the data because they differ from previous data and because they are calculated from only a small number of stars.

5. Summary

The distributions, in terms of raw counts and percentages, as well as the average distances and parallaxes of each spectral type per magnitude are reported.

6. References

- Cox, A. 2000, "Allen's Astrophysical Quantities," AIP Press, Chapters 7 and 15
- Høg, E. et al. 2000, AsPH, 355, L27-L30 (Tyco2 Catalog)
- Mermilliod, J. C. 1981, AsPH, 97, 235
- Monet, D. et. al. 2003, AJ, 125, 984
- Schmidt-Kaler, T. et al. 1982, AsPH, 6, 2b
- Turner, D. 1981, AJ, 86, 222

Zacharias, N., Urban, S. E., Zacharias, M. I., Wycoff, G. L., Hall, D. M., Monet, D. G., & Rafferty, T. J. 2004, AJ, 127, 3043 (UCAC2)

Zacharias, N., Monet, D. G., Levine, S. E., Urban, S. E., Gaume, R., & Wycoff, G. L. 2004, Bulletin of the AAS, 36, 1418 (NOMAD)